
Efficient generation of customized, complex and consistent synthetic data
It is often not possible or permitted to use production data (anonymized or not) for testing purposes, and this can 
lead to unpleasant side effects.
Synthetic data is the alternative. In the past, however, creating synthetic data has been too costly, too time 
consuming, or the process simply impractical. 
With iSynth, you can now create synthetic data efficiently and cost-effectively.

Challenges
Regulatory requirements: The requirements for handling personal, health and
banking data are becoming even more restrictive. In the age of big data analytics and
machine learning, solutions based on anonymizing data will most likely fail to meet data
and confidentiality protection requirements.

Agile projects and DevOps testing: In addition to appropriate development methods
and tools, frameworks, service simulators, and test utilities, having the right amount of
consistent, deterministic, high-quality test data is essential to performing appropriate
testing.

External sourcing: Software components are often developed by external partners.
Whether these partners operate onshore, nearshore or offshore is irrelevant. The
development partner needs data that accurately reflects the customer's sensitive
production data and that it can use without security concerns.

Complexity of data and applications: IT systems are used to process increasingly
complex and interconnected data. At the same time, IT landscapes are transformed
from large, monolithic applications to fine-grained components (known as “micro
services"). As a result, data is far more distributed. Therefore, test data must be
provided consistently across all affected components for testing purposes.

Efficiency in testing: Whether in manual or automated testing, efficiency is highly
dependent on test data. The search for suitable test data, the handling of varying data
after data refreshes and the irreversible consumption of test data lead to inefficiencies
in the test process.

Solution overview
iSynth supports the entire lifecycle of test data. Its object-oriented, model-based
approach makes it possible to generate the required synthetic data stepwise in a
structured, reproducible and yet flexible process.

Key Features
Support for all test levels: iSynth can
supply synthetic data for all test levels.
From unit tests to fully integrated system
tests on large system land-scapes.
iSynth's synthetic data can be used as
primary data or to complement existing
data and is suitable for generating both
small and large test data sets.

Flexible and extensible: iSynth is easy
to adapt and extend according to specific
requirements in terms of projects and
target environments. iSynth users can
implement specific functions themselves
as extensions in Python.

Teamwork: iSynth supports collabo-
ration across teams during the data
definition, generation and usage phases.

Customized test data: iSynth custo-
mizes test data directly for specific test
cases, making time-consuming
searches for suitable test data a thing of
the past. The data variance required for
the test cases can be managed using
rules or simple Excel sheets.

Manage data consumption: iSynth’s
integrated Data Checkout Tool can be
used to mark individual data records as
depleted and thus manage data
consumption.

Metadata: iSynth allows you to define
any metadata you wish to complement
the generated data (e.g. you can add a
test case ID).

Reusability: One of the basic concepts
of iSynth is the definition of reusable
components at the level of the data
model, the templates for data
constellations, as well as the deployment
scripts.

1) Define
data model

4) Deploy data
to applications

3) Synthesize
data

2) Define constel-
lation templates

5) Use/consume
data

1) The synthetic data model is defined from
a business perspective using an object-
oriented, Python-based synthax

2) Various data constellation templates are
shaped using the object types from the
data model

3) Data constellations are synthesized in
the needed quantity and variance

4) Synthesized data is transformed into
application-specific formats and
deployed using existing application
interfaces

5) Synthetic data is used and consumed
during development and testing



Integration in DevOps
In order to run appropriate, automated tests in DevOps setups, it is essential to supply
data that supports these tests exactly. With code-based data definitions under version
control that keep pace with ongoing development, iSynth will automatically generate
and deploy this data as part of a CI/CD pipeline so that subsequent test execution
becomes a breeze.

iSynth delivers consistent data to both the application
under test and the test automation tools and service
simulations/virtualizations. So everything fits together.

iSynth can also be used to define test cases and test
steps, including input data and expected results. In
this way, test execution can be driven directly by
synthetic data from iSynth. Input data embedded in
test scripts becomes obsolete, which simplifies their
creation and maintenance and saves costs.

Benefits
Cost reductions
- GDPR compliant by design, no measures for data protection needed
- Don’t loose time searching for suitable test data after a data refresh 
- Don't waste time manually creating and maintaining suitable test data
- Cut your execution or processing time with reduced datasets

Facilitators
- Off-shore software development based on rich synthetic test data 
- Hassle-free data exchange with external partners (e.g., reproduce defects)
- Requirements enriched with data samples that foster a common understanding
- Test automation in CI/CD pipelines and in end-to-end environments

Quality improvements
- Early verification of interface specifications
- Early, implicit testing of APIs by using them for data deployments
- Automated tests with higher-level business relevance
- Parallel testing without side-effects

Contact
Have we aroused your interest? Learn more about the potential of synthetic 
data in the entire software lifecycle and about iSynth, our tool to create it.

Your contacts:
Josef Bösze, Partner, josef.boesze@itopia.ch
Ralph Schibli, Managing Partner, ralph.schibli@itopia.ch

itopia ag - corporate information technology
Technoparkstrasse 1, CH-8005 Zurich
www.itopia.ch

© itopia ag, December 2022

Technology and 
architecture
Technology stack: iSynth is based on
technologies and frameworks such as
Python, Django, JavaScript, Vue.js and
Docker.

GUI: iSynth comes with a web-based
user interface for direct user interaction.
In addition, iSynth artefacts can also be
edited using any text editor or IDE with
Python support.

Database management systems:
iSynth uses a PostgreSQL, Oracle or
SQLite database to generate and hold
synthetic data.

Interfaces to target applications:
Synthetic data is deployed to the target
applications via any available interface.
File or SQL loaders (CSV, XML, JSON
etc.), messages via JMS or MQ or web
service calls (REST, SOAP) are
commonly used to inject data. iSynth
also has a mechanism to interact
bidirectionally with target applications.
When an application assigns business
keys to its data objects, they have to be
further propagated to other applications
in the downstream data flow.

Pipeline integration: iSynth comes with
a comprehensive OpenAPI-based REST
interface that allows seamless inte-
gration into a CI/CD pipeline, enabling an
end-to-end automated test process. This
includes connecting to test management
tools, service simulators or mocks and in
order to provide the right data with the a
defined variance as requested in the test
cases.

Runtime environment: iSynth runs on
container platforms (e.g., Kubernetes) as
well as on Windows, macOS, Linux or
any operating system that supports a
recent Python version.

Version Control System: iSynth arte-
facts are text-based files, typically kept
under version control (e.g., using git).
The generated data does not have to be
versioned since it can be produced any
time based on the versioned artefacts.

Test
automation

Service
simulation

Application
under test

iSynth

Version
control
system

Requirements 
and design

Data model

Test cases

Requirements

Development

Data
constellations

Test scripts

Source code

Automated
builds

Test data
generation

Build test
automation
executables

Build
executables

Automated
tests

Test data
provisioning

Test
execution

Test
installation

iS
yn

th

mailto:josef.boesze@itopia.ch
mailto:ralph.schibli@itopia.ch
http://www.itopia.ch/

